# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Xin-Jian Song,<sup>a</sup>\* Sheng-Hui Zhang,<sup>a</sup> Yao-Hua Li,<sup>a</sup> Xiao-Hong Tan<sup>a</sup> and Yan-Gang Wang<sup>b</sup>

<sup>a</sup>School of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi, Hubei 445000, People's Republic of China, and <sup>b</sup>College of chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: whxjsong@yahoo.com.cn

## Key indicators

Single-crystal X-ray study T = 292 KMean  $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$  R factor = 0.049 wR factor = 0.144 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

## 1-(2,6-Difluorobenzoyl)-3-(1,3,4-thiadiazol-2-yl)urea

In the title compound,  $C_{10}H_6F_2N_4O_2S$ , the urea group is essentially coplanar with the thiadiazole ring and nearly perpendicular to the benzene ring. The face-to-face distance of 3.2225 (15) Å and the centroid separation of 3.5862 (17) Å between parallel thiadiazole rings indicate the existence of  $\pi$ - $\pi$  stacking between neighbouring molecules. There are two molecules in the asymmetric unit.

### Comment

Aroyl ureas can be used as insecticides, herbicides and plantgrowth regulators (Wang *et al.*, 1998, 2004). 1,3,4-Thiadiazole derivatives have shown significant biological activities (Nakagawa *et al.*, 1996; Wang *et al.*, 1999). As part of our ongoing investigation of aroyl ureas containing a 1,3,4-thiadiazole group as plant-growth regulators, the title compound, (I), has recently been prepared in our laboratory. We present its X-ray crystal structure here, to provide a basis for consideration of stereochemical structure–activity relationships.



The molecular structure of (I) is shown in Fig. 1. The asymmetric unit of the crystal contains two independent



© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved **Figure 1** The asymmetric unit of (I), with 50% probability displacement ellipsoids (arbitrary spheres for H atoms). Received 2 June 2005 Accepted 27 June 2005 Online 6 July 2005

ependent reflections



## Figure 2

A packing diagram, showing the intermolecular hydrogen bonds (dashed lines) and  $\pi$ - $\pi$  stacking [symmetry codes: (i) x, y - 1, z; (iii) 1 - x, 2 - y, 1 - z].

molecules with similar structures (Table 1). The urea group of (I) is essentially coplanar with the thiadiazole ring and nearly perpendicular to the benzene ring [dihedral angles 5.6 (2) and  $69.8 (1)^{\circ}$  for the S1-containing molecule, and 9.0 (1) and 55.3 (1) $^{\circ}$  for the S2-containing molecule].

Neighbouring molecules are linked by intermolecular N-H···N hydrogen bonding between the thiadiazole and imino groups (Fig. 2 and Table 2). There is  $\pi - \pi$  stacking between parallel thiadiazole rings of neighbouring molecules (Fig. 2). The face-to-face distance is 3.2225 (15) Å and the centroid separation is 3.5862 (17) Å.

## **Experimental**

Compound (I) was prepared according to the procedure of Li et al. (2003). Suitable single crystals were obtained by slow evaporation of an ethyl acetate-acetone solution (1:2) at room temperature (m.p. 472 K). Spectroscopic analysis: IR (KBr, v, cm<sup>-1</sup>): 3186, 3099, 1720, 1696; <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, δ, p.p.m.): 11.79 (*d*, 2H), 9.21 (*s*, 1H), 7.72– 7.24 (*m*, 3H). Elemental analysis, calculated for  $C_{10}H_6F_2N_4O_2S$ : C 42.11, H 2.12, N 19.91%; found: C 42.23, H 2.19, N 19.98%.

## Crystal data

| $C_{10}H_{6}F_{2}N_{4}O_{2}S$   | $D_x = 1.588 \text{ Mg m}^{-3}$           |
|---------------------------------|-------------------------------------------|
| $M_r = 284.26$                  | Mo $K\alpha$ radiation                    |
| Monoclinic, $P2_1/c$            | Cell parameters from 3500                 |
| a = 20.674 (2) Å                | reflections                               |
| b = 8.2442 (9) Å                | $	heta=2.7	extrm{-}24.1^{\circ}$          |
| c = 14.9541 (16)  Å             | $\mu = 0.30 \text{ mm}^{-1}$              |
| $\beta = 111.106 \ (2)^{\circ}$ | T = 292 (2) K                             |
| $V = 2377.8 (4) \text{ Å}^3$    | Block, colourless                         |
| Z = 8                           | $0.40 \times 0.20 \times 0.10 \text{ mm}$ |

### Data collection

| Bruker SMART CCD area-detector<br>diffractometer | 4661 ind<br>3583 ref   |
|--------------------------------------------------|------------------------|
| $\varphi$ and $\omega$ scans                     | $R_{\rm int} = 0.$     |
| Absorption correction: multi-scan                | $\theta_{\rm max} = 2$ |
| (SADABS; Sheldrick, 1996)                        | h = -25                |
| $T_{\min} = 0.889, T_{\max} = 0.970$             | k = -9                 |
| 12506 measured reflections                       | l = -18                |
| Refinement                                       |                        |
| Refinement on $F^2$                              | $w = 1/[\sigma$        |
| $R[F^2 > 2\sigma(F^2)] = 0.049$                  | + 0.                   |
| $wR(F^2) = 0.144$                                | where                  |

S = 1.094661 reflections 343 parameters

H-atom parameters constrained

| 3583 reflections with $I > 2\sigma(I)$ |
|----------------------------------------|
| $R_{\rm int} = 0.028$                  |
| $\theta_{\rm max} = 26.0^{\circ}$      |
| $h = -25 \rightarrow 18$               |
| $k = -9 \rightarrow 10$                |
| $l = -18 \rightarrow 18$               |

#### $(F_0^2) + (0.0741P)^2$ 3849P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

| Table T  |      |         |      |
|----------|------|---------|------|
| Selected | bond | lengths | (Å). |

| C7-O1 | 1.213 (3) | C17-O3 | 1.214 (3) |
|-------|-----------|--------|-----------|
| C7-N1 | 1.360 (3) | C17-N5 | 1.367 (3) |
| C8-O2 | 1.209 (3) | C18-O4 | 1.206 (3) |
| C8-N2 | 1.360 (3) | C18-N6 | 1.355 (3) |
| C8-N1 | 1.387 (3) | C18-N5 | 1.397 (3) |
| C9-N2 | 1.383 (3) | C19-N6 | 1.368 (3) |

| Table 2       |          |     |    |
|---------------|----------|-----|----|
| Hydrogen-bond | geometry | (Å, | °) |

| $D - H \cdots A$             | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|------|-------------------------|--------------|--------------------------------------|
| N6-H6···O3                   | 0.86 | 1.99                    | 2.653 (3)    | 133                                  |
| $N2-H2 \cdot \cdot \cdot O1$ | 0.86 | 1.97                    | 2.648 (3)    | 134                                  |
| $N5-H5A\cdots N8^{i}$        | 0.86 | 2.00                    | 2.860 (3)    | 175                                  |
| $N1 - H1 \cdots N4^{ii}$     | 0.86 | 2.02                    | 2.875 (3)    | 178                                  |

Symmetry codes: (i) x, y - 1, z; (ii)  $x, \frac{1}{2} - y, z - \frac{1}{2}$ .

All H atoms were placed in geometrically idealized positions with C-H = 0.93 Å and N-H = 0.86 Å, and constrained to ride on their parent atoms with  $U_{iso}(H) = 1.2U_{eq}(carrier)$ .

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Hubei Provincial Department of Education Scientific Research Fund for Distinguished Young Scholars (grant No. Q200529003).

## References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, X.-H., Ling, Y. & Yang, X.-L. (2003). Chemistry, 66, 333-336.
- Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T., Kurihara, N. & Fujita, T. (1996). J. Pestic. Sci. 21, 195-201.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wang, S., Allan, R. D., Skerritt, J. H. & Kennedy, I. R. (1998). J. Agric. Food. Chem. 46, 3330-3338.
- Wang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). *Chem. J. Chin. Univ.* 20, 1903–1905.
  Wang, Y.-G., Zhao, X.-Y., Wang, Z.-Y., Chen, C.-B. & Zhang, Z.-W. (2004). *Chin. J. Org. Chem.* 24, 811–814.